5.5. 读写文件¶
到目前为止,我们讨论了如何处理数据,以及如何构建、训练和测试深度学习模型。然而,有时我们对所学的模型足够满意,我们希望保存训练的模型以备将来在各种环境中使用(可能部署进行预测)。此外,当运行一个耗时较长的训练过程时,最佳实践是定期保存中间结果(检查点),以确保在服务器电源被不小心断掉时不会损失几天的计算结果。因此,现在是时候学习如何加载和存储权重向量和整个模型。本节将讨论这些问题。
5.5.1. 加载和保存张量¶
对于单个张量,我们可以直接调用load
和save
函数分别读写它们。这两个函数都要求我们提供一个名称,save
要求将要保存的变量作为输入。
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()
x = np.arange(4)
npx.save('x-file', x)
import torch
from torch import nn
from torch.nn import functional as F
x = torch.arange(4)
torch.save(x, 'x-file')
import numpy as np
import tensorflow as tf
x = tf.range(4)
np.save("x-file.npy", x)
我们现在可以将存储在文件中的数据读回内存。
x2 = npx.load('x-file')
x2
[array([0., 1., 2., 3.])]
x2 = torch.load("x-file")
x2
tensor([0, 1, 2, 3])
x2 = np.load('x-file.npy', allow_pickle=True)
x2
array([0, 1, 2, 3], dtype=int32)
我们可以存储一个张量列表,然后把它们读回内存。
y = np.zeros(4)
npx.save('x-files', [x, y])
x2, y2 = npx.load('x-files')
(x2, y2)
(array([0., 1., 2., 3.]), array([0., 0., 0., 0.]))
y = torch.zeros(4)
torch.save([x, y], 'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)
(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))
y = tf.zeros(4)
np.save('xy-files.npy', [x, y])
x2, y2 = np.load('xy-files.npy', allow_pickle=True)
(x2, y2)
(array([0., 1., 2., 3.]), array([0., 0., 0., 0.]))
我们甚至可以写入或读取从字符串映射到张量的字典。当我们要读取或写入模型中的所有权重时,这很方便。
mydict = {'x': x, 'y': y}
npx.save('mydict', mydict)
mydict2 = npx.load('mydict')
mydict2
{'x': array([0., 1., 2., 3.]), 'y': array([0., 0., 0., 0.])}
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}
mydict = {'x': x, 'y': y}
np.save('mydict.npy', mydict)
mydict2 = np.load('mydict.npy', allow_pickle=True)
mydict2
array({'x': <tf.Tensor: shape=(4,), dtype=int32, numpy=array([0, 1, 2, 3], dtype=int32)>, 'y': <tf.Tensor: shape=(4,), dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>},
dtype=object)
5.5.2. 加载和保存模型参数¶
保存单个权重向量(或其他张量)确实是有用的,但是如果我们想保存整个模型,并在以后加载它们。单独保存每个向量则会变得很麻烦。毕竟,我们可能有数百个参数散布在各处。因此,深度学习框架提供了内置函数来保存和加载整个网络。需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。例如,如果我们有一个3层多层感知机,我们需要单独指定结构。因为模型本身可以包含任意代码,所以模型本身难以序列化。因此,为了恢复模型,我们需要用代码生成结构,然后从磁盘加载参数。让我们从熟悉的多层感知机开始尝试一下。
class MLP(nn.Block):
def __init__(self, **kwargs):
super(MLP, self).__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu')
self.output = nn.Dense(10)
def forward(self, x):
return self.output(self.hidden(x))
net = MLP()
net.initialize()
X = np.random.uniform(size=(2, 20))
Y = net(X)
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(20, 256)
self.output = nn.Linear(256, 10)
def forward(self, x):
return self.output(F.relu(self.hidden(x)))
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
class MLP(tf.keras.Model):
def __init__(self):
super().__init__()
self.flatten = tf.keras.layers.Flatten()
self.hidden = tf.keras.layers.Dense(units=256, activation=tf.nn.relu)
self.out = tf.keras.layers.Dense(units=10)
def call(self, inputs):
x = self.flatten(inputs)
x = self.hidden(x)
return self.out(x)
net = MLP()
X = tf.random.uniform((2, 20))
Y = net(X)
接下来,我们将模型的参数存储为一个叫做“mlp.params”的文件。
net.save_parameters('mlp.params')
torch.save(net.state_dict(), 'mlp.params')
net.save_weights('mlp.params')
为了恢复模型,我们实例化了原始多层感知机模型的一个备份。我们没有随机初始化模型参数,而是直接读取文件中存储的参数。
clone = MLP()
clone.load_parameters('mlp.params')
clone = MLP()
clone.load_state_dict(torch.load("mlp.params"))
clone.eval()
MLP(
(hidden): Linear(in_features=20, out_features=256, bias=True)
(output): Linear(in_features=256, out_features=10, bias=True)
)
clone = MLP()
clone.load_weights("mlp.params")
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f23f414e640>
由于两个实例具有相同的模型参数,在输入相同的X
时,两个实例的计算结果应该相同。让我们来验证一下。
Y_clone = clone(X)
Y_clone == Y
array([[ True, True, True, True, True, True, True, True, True,
True],
[ True, True, True, True, True, True, True, True, True,
True]])
Y_clone = clone(X)
Y_clone == Y
tensor([[True, True, True, True, True, True, True, True, True, True],
[True, True, True, True, True, True, True, True, True, True]])
Y_clone = clone(X)
Y_clone == Y
<tf.Tensor: shape=(2, 10), dtype=bool, numpy=
array([[ True, True, True, True, True, True, True, True, True,
True],
[ True, True, True, True, True, True, True, True, True,
True]])>
5.5.3. 小结¶
save
和load
函数可用于张量对象的文件读写。我们可以通过参数字典保存和加载网络的全部参数。
保存结构必须在代码中完成,而不是在参数中完成。
5.5.4. 练习¶
即使不需要将经过训练的模型部署到不同的设备上,存储模型参数还有什么实际的好处?
假设我们只想复用网络的一部分,以将其合并到不同的网络结构中。比如说,如果你想在一个新的网络中使用之前网络的前两层,你该怎么做?
如何同时保存网络结构和参数?你会对结构加上什么限制?