13.1. 图像增广
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in Colab

7.1节 中,我们提到过大型数据集是成功应用深度神经网络的先决条件。 图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。 此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。 例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。 我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。 可以说,图像增广技术对于AlexNet的成功是必不可少的。在本节中,我们将讨论这项广泛应用于计算机视觉的技术。

%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()
%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

13.1.1. 常用的图像增广方法

我们对常用图像增广方法的探索中,我们将使用下面这个尺寸为 \(400\times 500\) 的图像作为示例。

d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());
../_images/output_image-augmentation_7d0887_12_0.svg
d2l.set_figsize()
img = d2l.Image.open('../img/cat1.jpg')
d2l.plt.imshow(img);
../_images/output_image-augmentation_7d0887_15_0.svg

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数 apply 。 此函数在输入图像 img 上多次运行图像增广方法 aug 并显示所有结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)

13.1.1.1. 翻转和裁剪

左右翻转图像通常不会改变对象的类别。这是最早和最广泛使用的图像增广方法之一。 接下来,我们使用 transforms 模块来创建 RandomFlipLeftRight 实例,这样就各有50%的几率使图像向左或向右翻转。

apply(img, gluon.data.vision.transforms.RandomFlipLeftRight())
../_images/output_image-augmentation_7d0887_30_0.svg
apply(img, torchvision.transforms.RandomHorizontalFlip())
../_images/output_image-augmentation_7d0887_33_0.svg

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个 RandomFlipTopBottom 实例,使图像各有50%的几率向上或向下翻转。

apply(img, gluon.data.vision.transforms.RandomFlipTopBottom())
../_images/output_image-augmentation_7d0887_39_0.svg
apply(img, torchvision.transforms.RandomVerticalFlip())
../_images/output_image-augmentation_7d0887_42_0.svg

在我们使用的示例图像中,猫位于图像的中间,但并非所有图像都是这样。 在 6.5节 中,我们解释了汇聚层可以降低卷积层对目标位置的敏感性。 另外,我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。

在下面的代码中,我们随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5到2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),\(a\)\(b\)之间的随机数指的是在区间\([a, b]\)中通过均匀采样获得的连续值。

shape_aug = gluon.data.vision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
../_images/output_image-augmentation_7d0887_48_0.svg
shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
../_images/output_image-augmentation_7d0887_51_0.svg

13.1.1.2. 改变颜色

另一种增广方法是改变颜色。 我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。 在下面的示例中,我们随机更改图像的亮度,随机值为原始图像的50%(\(1-0.5\))到150%(\(1+0.5\))之间。

apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))
../_images/output_image-augmentation_7d0887_57_0.svg
apply(img, torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0, saturation=0, hue=0))
../_images/output_image-augmentation_7d0887_60_0.svg

同样,我们可以随机更改图像的色调。

apply(img, gluon.data.vision.transforms.RandomHue(0.5))
../_images/output_image-augmentation_7d0887_66_0.svg
apply(img, torchvision.transforms.ColorJitter(
    brightness=0, contrast=0, saturation=0, hue=0.5))
../_images/output_image-augmentation_7d0887_69_0.svg

我们还可以创建一个 RandomColorJitter 实例,并设置如何同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。

color_aug = gluon.data.vision.transforms.RandomColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
../_images/output_image-augmentation_7d0887_75_0.svg
color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
../_images/output_image-augmentation_7d0887_78_0.svg

13.1.1.3. 结合多种图像增广方法

在实践中,我们将结合多种图像增广方法。比如,我们可以通过使用一个 Compose 实例来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。

augs = gluon.data.vision.transforms.Compose([
    gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])
apply(img, augs)
../_images/output_image-augmentation_7d0887_84_0.svg
augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
../_images/output_image-augmentation_7d0887_87_0.svg

13.1.2. 使用图像增广进行训练

让我们使用图像增广来训练模型。 这里,我们使用CIFAR-10数据集,而不是我们之前使用的Fashion-MNIST数据集。 这是因为Fashion-MNIST数据集中对象的位置和大小已被规范化,而CIFAR-10数据集中对象的颜色和大小差异更明显。 CIFAR-10数据集中的前32个训练图像如下所示。

d2l.show_images(gluon.data.vision.CIFAR10(
    train=True)[0:32][0], 4, 8, scale=0.8);
../_images/output_image-augmentation_7d0887_93_0.svg
all_images = torchvision.datasets.CIFAR10(train=True, root="../data",
                                          download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8);
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ../data/cifar-10-python.tar.gz
10.2%

为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,且在预测过程中不使用随机操作的图像增广。 在这里,我们只使用最简单的随机左右翻转。 此外,我们使用 ToTensor 实例将一批图像转换为深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0到1。

train_augs = gluon.data.vision.transforms.Compose([
    gluon.data.vision.transforms.RandomFlipLeftRight(),
    gluon.data.vision.transforms.ToTensor()])

test_augs = gluon.data.vision.transforms.Compose([
    gluon.data.vision.transforms.ToTensor()])

接下来,我们定义了一个辅助函数,以便于读取图像和应用图像增广。Gluon数据集提供的 transform_first 函数将图像增广应用于每个训练示例的第一个元素(图像和标签),即图像顶部的元素。有关 DataLoader 的详细介绍,请参阅 3.5节

def load_cifar10(is_train, augs, batch_size):
    return gluon.data.DataLoader(
        gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
        batch_size=batch_size, shuffle=is_train,
        num_workers=d2l.get_dataloader_workers())
train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

接下来,我们定义一个辅助函数,以便于读取图像和应用图像增广。PyTorch 数据集提供的 transform 函数应用图像增广来转化图像。有关 DataLoader 的详细介绍,请参阅 3.5节

def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=d2l.get_dataloader_workers())
    return dataloader

13.1.2.1. 多GPU训练

我们在CIFAR-10数据集上训练 7.6节 中的ResNet-18模型。 回想一下 12.6节 中对多 GPU 训练的介绍。 接下来,我们定义一个函数,使用多GPU对模型进行训练和评估。

#@save
def train_batch_ch13(net, features, labels, loss, trainer, devices,
                     split_f=d2l.split_batch):
    X_shards, y_shards = split_f(features, labels, devices)
    with autograd.record():
        pred_shards = [net(X_shard) for X_shard in X_shards]
        ls = [loss(pred_shard, y_shard) for pred_shard, y_shard
              in zip(pred_shards, y_shards)]
    for l in ls:
        l.backward()
    # True标志允许使用过时的梯度,这很有用(例如,在微调BERT中)
    trainer.step(labels.shape[0], ignore_stale_grad=True)
    train_loss_sum = sum([float(l.sum()) for l in ls])
    train_acc_sum = sum(d2l.accuracy(pred_shard, y_shard)
                        for pred_shard, y_shard in zip(pred_shards, y_shards))
    return train_loss_sum, train_acc_sum

#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
               devices=d2l.try_all_gpus(), split_f=d2l.split_batch):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        # 4个维度:储存训练损失,训练准确度,实例数,特点数
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = train_batch_ch13(
                net, features, labels, loss, trainer, devices, split_f)
            metric.add(l, acc, labels.shape[0], labels.size)
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpus(net, test_iter, split_f)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {metric[0] / metric[2]:.3f}, train acc '
          f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
          f'{str(devices)}')
#@save
def train_batch_ch13(net, X, y, loss, trainer, devices):
    if isinstance(X, list):
        # 微调BERT中所需(稍后讨论)
        X = [x.to(devices[0]) for x in X]
    else:
        X = X.to(devices[0])
    y = y.to(devices[0])
    net.train()
    trainer.zero_grad()
    pred = net(X)
    l = loss(pred, y)
    l.sum().backward()
    trainer.step()
    train_loss_sum = l.sum()
    train_acc_sum = d2l.accuracy(pred, y)
    return train_loss_sum, train_acc_sum

#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        # 4个维度:储存训练损失,训练准确度,实例数,特点数
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = train_batch_ch13(
                net, features, labels, loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {metric[0] / metric[2]:.3f}, train acc '
          f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
          f'{str(devices)}')

现在,我们可以定义 train_with_data_aug 函数,使用图像增广来训练模型。该函数获取所有的GPU,并使用Adam作为训练的优化算法,将图像增广应用于训练集,最后调用刚刚定义的用于训练和评估模型的 train_ch13 函数。

batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10)
net.initialize(init=init.Xavier(), ctx=devices)

def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
    train_iter = load_cifar10(True, train_augs, batch_size)
    test_iter = load_cifar10(False, test_augs, batch_size)
    loss = gluon.loss.SoftmaxCrossEntropyLoss()
    trainer = gluon.Trainer(net.collect_params(), 'adam',
                            {'learning_rate': lr})
    train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)

def init_weights(m):
    if type(m) in [nn.Linear, nn.Conv2d]:
        nn.init.xavier_uniform_(m.weight)

net.apply(init_weights)

def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
    train_iter = load_cifar10(True, train_augs, batch_size)
    test_iter = load_cifar10(False, test_augs, batch_size)
    loss = nn.CrossEntropyLoss(reduction="none")
    trainer = torch.optim.Adam(net.parameters(), lr=lr)
    train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)

让我们使用基于随机左右翻转的图像增广来训练模型。

train_with_data_aug(train_augs, test_augs, net)
loss 0.167, train acc 0.942, test acc 0.854
4429.4 examples/sec on [gpu(0), gpu(1)]
../_images/output_image-augmentation_7d0887_133_1.svg
train_with_data_aug(train_augs, test_augs, net)
loss 0.173, train acc 0.941, test acc 0.811
5122.3 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]
../_images/output_image-augmentation_7d0887_136_1.svg

13.1.3. 小结

  • 图像增广基于现有的训练数据生成随机图像,来提高模型的概化能力。

  • 为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,而在预测过程中不使用随机操作的图像增广。

  • 深度学习框架提供了许多不同的图像增广方法,这些方法可以被同时应用。

13.1.4. 练习

  1. 在不使用图像增广的情况下训练模型: train_with_data_aug(no_aug, no_aug) 。比较使用和不使用图像增广的训练结果和测试精度。这个对比实验能支持图像增广可以减轻过度拟合的论点吗?为什么?

  2. 在基于 CIFAR-10 数据集的模型训练中结合多种不同的图像增广方法。它能提高测试准确性吗?

  3. 参阅深度学习框架的在线文档。它还提供了哪些其他的图像增广方法?