12.3. 目标检测和边界框
Open the notebook in Colab
Open the notebook in Colab
Open the notebook in Colab

在前面的章节(例如 7.1节7.4节)中,我们介绍了各种图像分类模型。 在图像分类任务中,我们假设图像中只有一个主要物体对象,我们只关注如何识别其类别。 然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。 在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测

目标检测在多个领域中被广泛使用。 例如,在无人驾驶里,我们需要通过识别拍摄到的视频图像里的车辆、行人、道路和障碍的位置来规划行进线路。 机器人也常通过该任务来检测感兴趣的目标。安防领域则需要检测异常目标,如歹徒或者炸弹。

在接下来的几节中,我们将介绍几种用于目标检测的深度学习方法。 我们将首先介绍对象的位置

%matplotlib inline
from mxnet import image, np, npx
from d2l import mxnet as d2l

npx.set_np()
%matplotlib inline
import torch
from d2l import torch as d2l
%matplotlib inline
import tensorflow as tf
from d2l import tensorflow as d2l

下面加载本节将使用的示例图像。可以看到图像左边是一只狗,右边是一只猫。 它们是这张图像里的两个主要目标。

d2l.set_figsize()
img = image.imread('../img/catdog.jpg').asnumpy()
d2l.plt.imshow(img);
../_images/output_bounding-box_d6b70e_15_0.svg
d2l.set_figsize()
img = d2l.plt.imread('../img/catdog.jpg')
d2l.plt.imshow(img);
../_images/output_bounding-box_d6b70e_18_0.svg
d2l.set_figsize()
img = d2l.plt.imread('../img/catdog.jpg')
d2l.plt.imshow(img);
../_images/output_bounding-box_d6b70e_21_0.svg

12.3.1. 边界框

在目标检测中,我们通常使用边界框(bounding box)来描述对象的空间位置。 边界框是矩形的,由矩形左上角的 \(x\)\(y\) 坐标以及右下角的坐标决定。 另一种常用的边界框表示方法是边界框中心的 \((x, y)\) 轴坐标以及框的宽度和高度。

在这里,我们定义在这两种表示之间进行转换的函数:box_corner_to_center 从两角表示转换为中心宽度表示,而 box_center_to_corner 反之亦然。 输入参数 boxes 可以是长度为 4 的张量,也可以是形状的二维张量(\(n\),4),其中 \(n\) 是边界框的数量。

#@save
def box_corner_to_center(boxes):
    """从(左上,右下)转换到(中间,宽度,高度)"""
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    cx = (x1 + x2) / 2
    cy = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1
    boxes = np.stack((cx, cy, w, h), axis=-1)
    return boxes

#@save
def box_center_to_corner(boxes):
    """从(中间,宽度,高度)转换到(左上,右下)"""
    cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    x1 = cx - 0.5 * w
    y1 = cy - 0.5 * h
    x2 = cx + 0.5 * w
    y2 = cy + 0.5 * h
    boxes = np.stack((x1, y1, x2, y2), axis=-1)
    return boxes
#@save
def box_corner_to_center(boxes):
    """从(左上,右下)转换到(中间,宽度,高度)"""
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    cx = (x1 + x2) / 2
    cy = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1
    boxes = torch.stack((cx, cy, w, h), axis=-1)
    return boxes

#@save
def box_center_to_corner(boxes):
    """从(中间,宽度,高度)转换到(左上,右下)"""
    cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    x1 = cx - 0.5 * w
    y1 = cy - 0.5 * h
    x2 = cx + 0.5 * w
    y2 = cy + 0.5 * h
    boxes = torch.stack((x1, y1, x2, y2), axis=-1)
    return boxes
#@save
def box_corner_to_center(boxes):
    """从(左上,右下)转换到(中间,宽度,高度)"""
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    cx = (x1 + x2) / 2
    cy = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1
    boxes = tf.stack((cx, cy, w, h), axis=-1)
    return boxes

#@save
def box_center_to_corner(boxes):
    """从(中间,宽度,高度)转换到(左上,右下)"""
    cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    x1 = cx - 0.5 * w
    y1 = cy - 0.5 * h
    x2 = cx + 0.5 * w
    y2 = cy + 0.5 * h
    boxes = tf.stack((x1, y1, x2, y2), axis=-1)
    return boxes

我们将根据坐标信息定义图像中狗和猫的边界框。 图像中坐标的原点是图像的左上角,右侧和向下分别是 \(x\)\(y\) 轴的正方向。

# bbox是边界框的英文缩写
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]

我们可以通过转换两次来验证两个边界框转换函数的正确性。

boxes = np.array((dog_bbox, cat_bbox))
box_center_to_corner(box_corner_to_center(boxes)) == boxes
array([[ True,  True,  True,  True],
       [ True,  True,  True,  True]])
boxes = torch.tensor((dog_bbox, cat_bbox))
box_center_to_corner(box_corner_to_center(boxes)) == boxes
tensor([[True, True, True, True],
        [True, True, True, True]])
boxes = tf.constant((dog_bbox, cat_bbox))
box_center_to_corner(box_corner_to_center(boxes)) == boxes
<tf.Tensor: shape=(2, 4), dtype=bool, numpy=
array([[ True,  True,  True,  True],
       [ True,  True,  True,  True]])>

我们可以将边界框在图中画出,以检查其是否准确。 画之前,我们定义一个辅助函数 bbox_to_rect。 它将边界框表示成 matplotlib 的边界框格式。

#@save
def bbox_to_rect(bbox, color):
    # 将边界框 (左上x, 左上y, 右下x, 右下y) 格式转换成 matplotlib 格式:
    # ((左上x, 左上y), 宽, 高)
    return d2l.plt.Rectangle(xy=(bbox[0], bbox[1]), width=bbox[2] - bbox[0],
                             height=bbox[3] - bbox[1], fill=False,
                             edgecolor=color, linewidth=2)

在图像上添加边界框之后,我们可以看到两个物体的主要轮廓基本上在两个框内。

fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));
../_images/output_bounding-box_d6b70e_55_0.svg
fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));
../_images/output_bounding-box_d6b70e_58_0.svg
fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));
../_images/output_bounding-box_d6b70e_61_0.svg

12.3.2. 小结

  • 目标检测不仅可以识别图像中所有感兴趣的物体,还能识别它们的位置,该位置通常由矩形边界框表示。

  • 我们可以在两种常用的边界框表示(中间,宽度,高度)和(左上,右下)坐标之间进行转换。

12.3.3. 练习

  1. 找到另一张图像,然后尝试标记包含该对象的边界框。比较标签边界框和类别:哪些通常需要更长时间?

  2. 为什么 box_corner_to_centerbox_center_to_corner 的输入参数的最内层维度总是4?