稠密连接网络(DenseNet) ======================== ResNet极大地改变了如何参数化深层网络中函数的观点。 *稠密连接网络*\ (DenseNet) :cite:`Huang.Liu.Van-Der-Maaten.ea.2017`\ 在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解一下。 从ResNet到DenseNet ------------------ 回想一下任意函数的泰勒展开式(Taylor expansion),它把这个函数分解成越来越高阶的项。在\ :math:`x`\ 接近0时, .. math:: f(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \ldots. 同样,ResNet将函数展开为 .. math:: f(\mathbf{x}) = \mathbf{x} + g(\mathbf{x}). 也就是说,ResNet将\ :math:`f`\ 分解为两部分:一个简单的线性项和一个复杂的非线性项。 那么再向前拓展一步,如果我们想将\ :math:`f`\ 拓展成超过两部分的信息呢? 一种方案便是DenseNet。 .. _fig_densenet_block: .. figure:: ../img/densenet-block.svg ResNet(左)与 DenseNet(右)在跨层连接上的主要区别:使用相加和使用连结。 如 :numref:`fig_densenet_block`\ 所示,ResNet和DenseNet的关键区别在于,DenseNet输出是\ *连接*\ (用图中的\ :math:`[,]`\ 表示)而不是如ResNet的简单相加。 因此,在应用越来越复杂的函数序列后,我们执行从\ :math:`\mathbf{x}`\ 到其展开式的映射: .. math:: \mathbf{x} \to \left[ \mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})]), f_3([\mathbf{x}, f_1(\mathbf{x}), f_2([\mathbf{x}, f_1(\mathbf{x})])]), \ldots\right]. 最后,将这些展开式结合到多层感知机中,再次减少特征的数量。 实现起来非常简单:我们不需要添加术语,而是将它们连接起来。 DenseNet这个名字由变量之间的“稠密连接”而得来,最后一层与之前的所有层紧密相连。 稠密连接如 :numref:`fig_densenet`\ 所示。 .. _fig_densenet: .. figure:: ../img/densenet.svg 稠密连接。 稠密网络主要由2部分构成:\ *稠密块*\ (dense block)和\ *过渡层*\ (transition layer)。 前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。 稠密块体 -------- DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构(参见 :numref:`sec_resnet`\ 中的练习)。 我们首先实现一下这个架构。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() def conv_block(num_channels): blk = nn.Sequential() blk.add(nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(num_channels, kernel_size=3, padding=1)) return blk .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import torch from torch import nn from d2l import torch as d2l def conv_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2d(input_channels), nn.ReLU(), nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import tensorflow as tf from d2l import tensorflow as d2l class ConvBlock(tf.keras.layers.Layer): def __init__(self, num_channels): super(ConvBlock, self).__init__() self.bn = tf.keras.layers.BatchNormalization() self.relu = tf.keras.layers.ReLU() self.conv = tf.keras.layers.Conv2D( filters=num_channels, kernel_size=(3, 3), padding='same') self.listLayers = [self.bn, self.relu, self.conv] def call(self, x): y = x for layer in self.listLayers.layers: y = layer(y) y = tf.keras.layers.concatenate([x,y], axis=-1) return y .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.nn as nn def conv_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2D(input_channels), nn.ReLU(), nn.Conv2D(input_channels, num_channels, kernel_size=3, padding=1)) .. raw:: html
.. raw:: html
一个\ *稠密块*\ 由多个卷积块组成,每个卷积块使用相同数量的输出通道。 然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python class DenseBlock(nn.Block): def __init__(self, num_convs, num_channels, **kwargs): super().__init__(**kwargs) self.net = nn.Sequential() for _ in range(num_convs): self.net.add(conv_block(num_channels)) def forward(self, X): for blk in self.net: Y = blk(X) # 连接通道维度上每个块的输入和输出 X = np.concatenate((X, Y), axis=1) return X .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python class DenseBlock(nn.Module): def __init__(self, num_convs, input_channels, num_channels): super(DenseBlock, self).__init__() layer = [] for i in range(num_convs): layer.append(conv_block( num_channels * i + input_channels, num_channels)) self.net = nn.Sequential(*layer) def forward(self, X): for blk in self.net: Y = blk(X) # 连接通道维度上每个块的输入和输出 X = torch.cat((X, Y), dim=1) return X .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python class DenseBlock(tf.keras.layers.Layer): def __init__(self, num_convs, num_channels): super(DenseBlock, self).__init__() self.listLayers = [] for _ in range(num_convs): self.listLayers.append(ConvBlock(num_channels)) def call(self, x): for layer in self.listLayers.layers: x = layer(x) return x .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python class DenseBlock(nn.Layer): def __init__(self, num_convs, input_channels, num_channels): super(DenseBlock, self).__init__() layer = [] for i in range(num_convs): layer.append( conv_block(num_channels * i + input_channels, num_channels)) self.net = nn.Sequential(*layer) def forward(self, X): for blk in self.net: Y = blk(X) # 连接通道维度上每个块的输入和输出 X = paddle.concat(x=[X, Y], axis=1) return X .. raw:: html
.. raw:: html
在下面的例子中,我们定义一个有2个输出通道数为10的\ ``DenseBlock``\ 。 使用通道数为3的输入时,我们会得到通道数为\ :math:`3+2\times 10=23`\ 的输出。 卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为\ *增长率*\ (growth rate)。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = DenseBlock(2, 10) blk.initialize() X = np.random.uniform(size=(4, 3, 8, 8)) Y = blk(X) Y.shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [07:37:21] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (4, 23, 8, 8) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = DenseBlock(2, 3, 10) X = torch.randn(4, 3, 8, 8) Y = blk(X) Y.shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output torch.Size([4, 23, 8, 8]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = DenseBlock(2, 10) X = tf.random.uniform((4, 8, 8, 3)) Y = blk(X) Y.shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output TensorShape([4, 8, 8, 23]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = DenseBlock(2, 3, 10) X = paddle.randn([4, 3, 8, 8]) Y = blk(X) Y.shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output W0818 09:29:24.571579 105674 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.8, Runtime API Version: 11.8 W0818 09:29:24.602654 105674 gpu_resources.cc:91] device: 0, cuDNN Version: 8.7. .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [4, 23, 8, 8] .. raw:: html
.. raw:: html
过渡层 ------ 由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。 它通过\ :math:`1\times 1`\ 卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def transition_block(num_channels): blk = nn.Sequential() blk.add(nn.BatchNorm(), nn.Activation('relu'), nn.Conv2D(num_channels, kernel_size=1), nn.AvgPool2D(pool_size=2, strides=2)) return blk .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def transition_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2d(input_channels), nn.ReLU(), nn.Conv2d(input_channels, num_channels, kernel_size=1), nn.AvgPool2d(kernel_size=2, stride=2)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python class TransitionBlock(tf.keras.layers.Layer): def __init__(self, num_channels, **kwargs): super(TransitionBlock, self).__init__(**kwargs) self.batch_norm = tf.keras.layers.BatchNormalization() self.relu = tf.keras.layers.ReLU() self.conv = tf.keras.layers.Conv2D(num_channels, kernel_size=1) self.avg_pool = tf.keras.layers.AvgPool2D(pool_size=2, strides=2) def call(self, x): x = self.batch_norm(x) x = self.relu(x) x = self.conv(x) return self.avg_pool(x) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def transition_block(input_channels, num_channels): return nn.Sequential( nn.BatchNorm2D(input_channels), nn.ReLU(), nn.Conv2D(input_channels, num_channels, kernel_size=1), nn.AvgPool2D(kernel_size=2, stride=2)) .. raw:: html
.. raw:: html
对上一个例子中稠密块的输出使用通道数为10的过渡层。 此时输出的通道数减为10,高和宽均减半。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = transition_block(10) blk.initialize() blk(Y).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (4, 10, 4, 4) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = transition_block(23, 10) blk(Y).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output torch.Size([4, 10, 4, 4]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = TransitionBlock(10) blk(Y).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output TensorShape([4, 4, 4, 10]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python blk = transition_block(23, 10) blk(Y).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [4, 10, 4, 4] .. raw:: html
.. raw:: html
DenseNet模型 ------------ 我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net = nn.Sequential() net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3), nn.BatchNorm(), nn.Activation('relu'), nn.MaxPool2D(pool_size=3, strides=2, padding=1)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python b1 = nn.Sequential( nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def block_1(): return tf.keras.Sequential([ tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same'), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU(), tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python b1 = nn.Sequential( nn.Conv2D(1, 64, kernel_size=7, stride=2, padding=3), nn.BatchNorm2D(64), nn.ReLU(), nn.MaxPool2D(kernel_size=3, stride=2, padding=1)) .. raw:: html
.. raw:: html
接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。 与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。 这里我们设成4,从而与 :numref:`sec_resnet`\ 的ResNet-18保持一致。 稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。 在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,DenseNet则使用过渡层来减半高和宽,并减半通道数。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python # num_channels为当前的通道数 num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] for i, num_convs in enumerate(num_convs_in_dense_blocks): net.add(DenseBlock(num_convs, growth_rate)) # 上一个稠密块的输出通道数 num_channels += num_convs * growth_rate # 在稠密块之间添加一个转换层,使通道数量减半 if i != len(num_convs_in_dense_blocks) - 1: num_channels //= 2 net.add(transition_block(num_channels)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python # num_channels为当前的通道数 num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] blks = [] for i, num_convs in enumerate(num_convs_in_dense_blocks): blks.append(DenseBlock(num_convs, num_channels, growth_rate)) # 上一个稠密块的输出通道数 num_channels += num_convs * growth_rate # 在稠密块之间添加一个转换层,使通道数量减半 if i != len(num_convs_in_dense_blocks) - 1: blks.append(transition_block(num_channels, num_channels // 2)) num_channels = num_channels // 2 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def block_2(): net = block_1() # num_channels为当前的通道数 num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] for i, num_convs in enumerate(num_convs_in_dense_blocks): net.add(DenseBlock(num_convs, growth_rate)) # 上一个稠密块的输出通道数 num_channels += num_convs * growth_rate # 在稠密块之间添加一个转换层,使通道数量减半 if i != len(num_convs_in_dense_blocks) - 1: num_channels //= 2 net.add(TransitionBlock(num_channels)) return net .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python # num_channels为当前的通道数 num_channels, growth_rate = 64, 32 num_convs_in_dense_blocks = [4, 4, 4, 4] blks = [] for i, num_convs in enumerate(num_convs_in_dense_blocks): blks.append(DenseBlock(num_convs, num_channels, growth_rate)) # 上一个稠密块的输出通道数 num_channels += num_convs * growth_rate # 在稠密块之间添加一个转换层,使通道数量减半 if i != len(num_convs_in_dense_blocks) - 1: blks.append(transition_block(num_channels, num_channels // 2)) num_channels = num_channels // 2 .. raw:: html
.. raw:: html
与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(), nn.Dense(10)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net = nn.Sequential( b1, *blks, nn.BatchNorm2d(num_channels), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(num_channels, 10)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def net(): net = block_2() net.add(tf.keras.layers.BatchNormalization()) net.add(tf.keras.layers.ReLU()) net.add(tf.keras.layers.GlobalAvgPool2D()) net.add(tf.keras.layers.Flatten()) net.add(tf.keras.layers.Dense(10)) return net .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net = nn.Sequential( b1, *blks, nn.BatchNorm2D(num_channels), nn.ReLU(), nn.AdaptiveMaxPool2D((1, 1)), nn.Flatten(), nn.Linear(num_channels, 10)) .. raw:: html
.. raw:: html
训练模型 -------- 由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python lr, num_epochs, batch_size = 0.1, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.145, train acc 0.946, test acc 0.858 5372.7 examples/sec on gpu(0) .. figure:: output_densenet_e82156_123_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python lr, num_epochs, batch_size = 0.1, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.140, train acc 0.948, test acc 0.885 5626.3 examples/sec on cuda:0 .. figure:: output_densenet_e82156_126_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python lr, num_epochs, batch_size = 0.1, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.136, train acc 0.951, test acc 0.882 6489.5 examples/sec on /GPU:0 .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output .. figure:: output_densenet_e82156_129_2.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python lr, num_epochs, batch_size = 0.1, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.132, train acc 0.951, test acc 0.885 4683.1 examples/sec on Place(gpu:0) .. figure:: output_densenet_e82156_132_1.svg .. raw:: html
.. raw:: html
小结 ---- - 在跨层连接上,不同于ResNet中将输入与输出相加,稠密连接网络(DenseNet)在通道维上连结输入与输出。 - DenseNet的主要构建模块是稠密块和过渡层。 - 在构建DenseNet时,我们需要通过添加过渡层来控制网络的维数,从而再次减少通道的数量。 练习 ---- 1. 为什么我们在过渡层使用平均汇聚层而不是最大汇聚层? 2. DenseNet的优点之一是其模型参数比ResNet小。为什么呢? 3. DenseNet一个诟病的问题是内存或显存消耗过多。 1. 真的是这样吗?可以把输入形状换成\ :math:`224 \times 224`\ ,来看看实际的显存消耗。 2. 有另一种方法来减少显存消耗吗?需要改变框架么? 4. 实现DenseNet论文 :cite:`Huang.Liu.Van-Der-Maaten.ea.2017`\ 表1所示的不同DenseNet版本。 5. 应用DenseNet的思想设计一个基于多层感知机的模型。将其应用于 :numref:`sec_kaggle_house`\ 中的房价预测任务。 .. raw:: html
mxnetpytorchtensorflowpaddle
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html