.. _sec_semantic_segmentation: 语义分割和数据集 ================ 在 :numref:`sec_bbox`— :numref:`sec_rcnn`\ 中讨论的目标检测问题中,我们一直使用方形边界框来标注和预测图像中的目标。 本节将探讨\ *语义分割*\ (semantic segmentation)问题,它重点关注于如何将图像分割成属于不同语义类别的区域。 与目标检测不同,语义分割可以识别并理解图像中每一个像素的内容:其语义区域的标注和预测是像素级的。 :numref:`fig_segmentation`\ 展示了语义分割中图像有关狗、猫和背景的标签。 与目标检测相比,语义分割标注的像素级的边框显然更加精细。 .. _fig_segmentation: .. figure:: ../img/segmentation.svg 语义分割中图像有关狗、猫和背景的标签 图像分割和实例分割 ------------------ 计算机视觉领域还有2个与语义分割相似的重要问题,即\ *图像分割*\ (image segmentation)和\ *实例分割*\ (instance segmentation)。 我们在这里将它们同语义分割简单区分一下。 - *图像分割*\ 将图像划分为若干组成区域,这类问题的方法通常利用图像中像素之间的相关性。它在训练时不需要有关图像像素的标签信息,在预测时也无法保证分割出的区域具有我们希望得到的语义。以 :numref:`fig_segmentation`\ 中的图像作为输入,图像分割可能会将狗分为两个区域:一个覆盖以黑色为主的嘴和眼睛,另一个覆盖以黄色为主的其余部分身体。 - *实例分割*\ 也叫\ *同时检测并分割*\ (simultaneous detection and segmentation),它研究如何识别图像中各个目标实例的像素级区域。与语义分割不同,实例分割不仅需要区分语义,还要区分不同的目标实例。例如,如果图像中有两条狗,则实例分割需要区分像素属于的两条狗中的哪一条。 Pascal VOC2012 语义分割数据集 ----------------------------- 最重要的语义分割数据集之一是\ `Pascal VOC2012 `__\ 。 下面我们深入了解一下这个数据集。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python %matplotlib inline import os from mxnet import gluon, image, np, npx from d2l import mxnet as d2l npx.set_np() .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python %matplotlib inline import os import torch import torchvision from d2l import torch as d2l .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python %matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import os import paddle import paddle.vision as paddlevision .. raw:: html
.. raw:: html
数据集的tar文件大约为2GB,所以下载可能需要一段时间。 提取出的数据集位于\ ``../data/VOCdevkit/VOC2012``\ 。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar', '4e443f8a2eca6b1dac8a6c57641b67dd40621a49') voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Downloading ../data/VOCtrainval_11-May-2012.tar from http://d2l-data.s3-accelerate.amazonaws.com/VOCtrainval_11-May-2012.tar... .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar', '4e443f8a2eca6b1dac8a6c57641b67dd40621a49') voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Downloading ../data/VOCtrainval_11-May-2012.tar from http://d2l-data.s3-accelerate.amazonaws.com/VOCtrainval_11-May-2012.tar... .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar', '4e443f8a2eca6b1dac8a6c57641b67dd40621a49') voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output 正在从http://d2l-data.s3-accelerate.amazonaws.com/VOCtrainval_11-May-2012.tar下载../data/VOCtrainval_11-May-2012.tar... .. raw:: html
.. raw:: html
进入路径\ ``../data/VOCdevkit/VOC2012``\ 之后,我们可以看到数据集的不同组件。 ``ImageSets/Segmentation``\ 路径包含用于训练和测试样本的文本文件,而\ ``JPEGImages``\ 和\ ``SegmentationClass``\ 路径分别存储着每个示例的输入图像和标签。 此处的标签也采用图像格式,其尺寸和它所标注的输入图像的尺寸相同。 此外,标签中颜色相同的像素属于同一个语义类别。 下面将\ ``read_voc_images``\ 函数定义为将所有输入的图像和标签读入内存。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def read_voc_images(voc_dir, is_train=True): """读取所有VOC图像并标注""" txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation', 'train.txt' if is_train else 'val.txt') with open(txt_fname, 'r') as f: images = f.read().split() features, labels = [], [] for i, fname in enumerate(images): features.append(image.imread(os.path.join( voc_dir, 'JPEGImages', f'{fname}.jpg'))) labels.append(image.imread(os.path.join( voc_dir, 'SegmentationClass', f'{fname}.png'))) return features, labels train_features, train_labels = read_voc_images(voc_dir, True) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [07:19:06] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def read_voc_images(voc_dir, is_train=True): """读取所有VOC图像并标注""" txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation', 'train.txt' if is_train else 'val.txt') mode = torchvision.io.image.ImageReadMode.RGB with open(txt_fname, 'r') as f: images = f.read().split() features, labels = [], [] for i, fname in enumerate(images): features.append(torchvision.io.read_image(os.path.join( voc_dir, 'JPEGImages', f'{fname}.jpg'))) labels.append(torchvision.io.read_image(os.path.join( voc_dir, 'SegmentationClass' ,f'{fname}.png'), mode)) return features, labels train_features, train_labels = read_voc_images(voc_dir, True) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def read_voc_images(voc_dir, is_train=True): """Defined in :numref:`sec_semantic_segmentation`""" """读取所有VOC图像并标注 Defined in :numref:`sec_semantic_segmentation`""" txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation', 'train.txt' if is_train else 'val.txt') with open(txt_fname, 'r') as f: images = f.read().split() features, labels = [], [] for i, fname in enumerate(images): features.append(paddle.vision.image.image_load(os.path.join( voc_dir, 'JPEGImages', f'{fname}.jpg'), backend='cv2')[..., ::-1].transpose( [2, 0, 1])) labels.append(paddle.vision.image.image_load(os.path.join( voc_dir, 'SegmentationClass', f'{fname}.png'), backend='cv2')[..., ::-1].transpose( [2, 0, 1])) return features, labels train_features, train_labels = read_voc_images(voc_dir, True) .. raw:: html
.. raw:: html
下面我们绘制前5个输入图像及其标签。 在标签图像中,白色和黑色分别表示边框和背景,而其他颜色则对应不同的类别。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python n = 5 imgs = train_features[0:n] + train_labels[0:n] d2l.show_images(imgs, 2, n); .. figure:: output_semantic-segmentation-and-dataset_23ff18_39_0.png .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python n = 5 imgs = train_features[0:n] + train_labels[0:n] imgs = [img.permute(1,2,0) for img in imgs] d2l.show_images(imgs, 2, n); .. figure:: output_semantic-segmentation-and-dataset_23ff18_42_0.png .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python n = 5 imgs = train_features[0:n] + train_labels[0:n] imgs = [img.transpose([1, 2, 0]) for img in imgs] d2l.show_images(imgs, 2, n); .. figure:: output_semantic-segmentation-and-dataset_23ff18_45_0.png .. raw:: html
.. raw:: html
接下来,我们列举RGB颜色值和类名。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] #@save VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor'] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] #@save VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor'] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] #@save VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor'] .. raw:: html
.. raw:: html
通过上面定义的两个常量,我们可以方便地查找标签中每个像素的类索引。 我们定义了\ ``voc_colormap2label``\ 函数来构建从上述RGB颜色值到类别索引的映射,而\ ``voc_label_indices``\ 函数将RGB值映射到在Pascal VOC2012数据集中的类别索引。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def voc_colormap2label(): """构建从RGB到VOC类别索引的映射""" colormap2label = np.zeros(256 ** 3) for i, colormap in enumerate(VOC_COLORMAP): colormap2label[ (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i return colormap2label #@save def voc_label_indices(colormap, colormap2label): """将VOC标签中的RGB值映射到它们的类别索引""" colormap = colormap.astype(np.int32) idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256 + colormap[:, :, 2]) return colormap2label[idx] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def voc_colormap2label(): """构建从RGB到VOC类别索引的映射""" colormap2label = torch.zeros(256 ** 3, dtype=torch.long) for i, colormap in enumerate(VOC_COLORMAP): colormap2label[ (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i return colormap2label #@save def voc_label_indices(colormap, colormap2label): """将VOC标签中的RGB值映射到它们的类别索引""" colormap = colormap.permute(1, 2, 0).numpy().astype('int32') idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256 + colormap[:, :, 2]) return colormap2label[idx] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def voc_colormap2label(): """构建从RGB到VOC类别索引的映射""" colormap2label = paddle.zeros([256 ** 3], dtype=paddle.int64) for i, colormap in enumerate(VOC_COLORMAP): colormap2label[ (colormap[0] * 256 + colormap[1]) * 256 + colormap[2]] = i return colormap2label #@save def voc_label_indices(colormap, colormap2label): """将VOC标签中的RGB值映射到它们的类别索引""" colormap = colormap.transpose([1, 2, 0]).astype('int32') idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256 + colormap[:, :, 2]) return colormap2label[idx] .. raw:: html
.. raw:: html
例如,在第一张样本图像中,飞机头部区域的类别索引为1,而背景索引为0。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python y = voc_label_indices(train_labels[0], voc_colormap2label()) y[105:115, 130:140], VOC_CLASSES[1] .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 0., 0., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 1., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 1., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 1., 1., 1., 1.], [0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]]), 'aeroplane') .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python y = voc_label_indices(train_labels[0], voc_colormap2label()) y[105:115, 130:140], VOC_CLASSES[1] .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]), 'aeroplane') .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python y = voc_label_indices(train_labels[0], voc_colormap2label()) y[105:115, 130:140], VOC_CLASSES[1] .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (Tensor(shape=[10, 10], dtype=int64, place=Place(cpu), stop_gradient=True, [[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]), 'aeroplane') .. raw:: html
.. raw:: html
预处理数据 ~~~~~~~~~~ 在之前的实验,例如 :numref:`sec_alexnet`— :numref:`sec_googlenet`\ 中,我们通过再缩放图像使其符合模型的输入形状。 然而在语义分割中,这样做需要将预测的像素类别重新映射回原始尺寸的输入图像。 这样的映射可能不够精确,尤其在不同语义的分割区域。 为了避免这个问题,我们将图像裁剪为固定尺寸,而不是再缩放。 具体来说,我们使用图像增广中的随机裁剪,裁剪输入图像和标签的相同区域。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def voc_rand_crop(feature, label, height, width): """随机裁剪特征和标签图像""" feature, rect = image.random_crop(feature, (width, height)) label = image.fixed_crop(label, *rect) return feature, label imgs = [] for _ in range(n): imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300) d2l.show_images(imgs[::2] + imgs[1::2], 2, n); .. figure:: output_semantic-segmentation-and-dataset_23ff18_87_0.png .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def voc_rand_crop(feature, label, height, width): """随机裁剪特征和标签图像""" rect = torchvision.transforms.RandomCrop.get_params( feature, (height, width)) feature = torchvision.transforms.functional.crop(feature, *rect) label = torchvision.transforms.functional.crop(label, *rect) return feature, label imgs = [] for _ in range(n): imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300) imgs = [img.permute(1, 2, 0) for img in imgs] d2l.show_images(imgs[::2] + imgs[1::2], 2, n); .. figure:: output_semantic-segmentation-and-dataset_23ff18_90_0.png .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def voc_rand_crop(feature, label, height, width): """随机裁剪特征和标签图像""" rect = paddle.vision.transforms.RandomCrop((height, width))._get_param( img=feature, output_size=(height, width)) feature = paddle.vision.transforms.crop(feature, *rect) label = paddle.vision.transforms.crop(label, *rect) return feature, label imgs = [] for _ in range(n): imgs += voc_rand_crop(train_features[0].transpose([1, 2, 0]), train_labels[0].transpose([1, 2, 0]), 200, 300) imgs = [img for img in imgs] d2l.show_images(imgs[::2] + imgs[1::2], 2, n); .. figure:: output_semantic-segmentation-and-dataset_23ff18_93_0.png .. raw:: html
.. raw:: html
自定义语义分割数据集类 ~~~~~~~~~~~~~~~~~~~~~~ 我们通过继承高级API提供的\ ``Dataset``\ 类,自定义了一个语义分割数据集类\ ``VOCSegDataset``\ 。 通过实现\ ``__getitem__``\ 函数,我们可以任意访问数据集中索引为\ ``idx``\ 的输入图像及其每个像素的类别索引。 由于数据集中有些图像的尺寸可能小于随机裁剪所指定的输出尺寸,这些样本可以通过自定义的\ ``filter``\ 函数移除掉。 此外,我们还定义了\ ``normalize_image``\ 函数,从而对输入图像的RGB三个通道的值分别做标准化。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save class VOCSegDataset(gluon.data.Dataset): """一个用于加载VOC数据集的自定义数据集""" def __init__(self, is_train, crop_size, voc_dir): self.rgb_mean = np.array([0.485, 0.456, 0.406]) self.rgb_std = np.array([0.229, 0.224, 0.225]) self.crop_size = crop_size features, labels = read_voc_images(voc_dir, is_train=is_train) self.features = [self.normalize_image(feature) for feature in self.filter(features)] self.labels = self.filter(labels) self.colormap2label = voc_colormap2label() print('read ' + str(len(self.features)) + ' examples') def normalize_image(self, img): return (img.astype('float32') / 255 - self.rgb_mean) / self.rgb_std def filter(self, imgs): return [img for img in imgs if ( img.shape[0] >= self.crop_size[0] and img.shape[1] >= self.crop_size[1])] def __getitem__(self, idx): feature, label = voc_rand_crop(self.features[idx], self.labels[idx], *self.crop_size) return (feature.transpose(2, 0, 1), voc_label_indices(label, self.colormap2label)) def __len__(self): return len(self.features) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save class VOCSegDataset(torch.utils.data.Dataset): """一个用于加载VOC数据集的自定义数据集""" def __init__(self, is_train, crop_size, voc_dir): self.transform = torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.crop_size = crop_size features, labels = read_voc_images(voc_dir, is_train=is_train) self.features = [self.normalize_image(feature) for feature in self.filter(features)] self.labels = self.filter(labels) self.colormap2label = voc_colormap2label() print('read ' + str(len(self.features)) + ' examples') def normalize_image(self, img): return self.transform(img.float() / 255) def filter(self, imgs): return [img for img in imgs if ( img.shape[1] >= self.crop_size[0] and img.shape[2] >= self.crop_size[1])] def __getitem__(self, idx): feature, label = voc_rand_crop(self.features[idx], self.labels[idx], *self.crop_size) return (feature, voc_label_indices(label, self.colormap2label)) def __len__(self): return len(self.features) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save class VOCSegDataset(paddle.io.Dataset): """一个用于加载VOC数据集的自定义数据集 Defined in :numref:`sec_semantic_segmentation`""" def __init__(self, is_train, crop_size, voc_dir): self.transform = paddle.vision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.crop_size = crop_size features, labels = read_voc_images(voc_dir, is_train=is_train) self.features = [self.normalize_image(feature) for feature in self.filter(features)] self.labels = self.filter(labels) self.colormap2label = voc_colormap2label() print('read ' + str(len(self.features)) + ' examples') def normalize_image(self, img): return self.transform(img.astype("float32") / 255) def filter(self, imgs): return [img for img in imgs if ( img.shape[1] >= self.crop_size[0] and img.shape[2] >= self.crop_size[1])] def __getitem__(self, idx): feature = paddle.to_tensor(self.features[idx],dtype='float32') label = paddle.to_tensor(self.labels[idx],dtype='float32') feature, label = voc_rand_crop(feature,label, *self.crop_size) return (feature, voc_label_indices(label, self.colormap2label)) def __len__(self): return len(self.features) .. raw:: html
.. raw:: html
读取数据集 ~~~~~~~~~~ 我们通过自定义的\ ``VOCSegDataset``\ 类来分别创建训练集和测试集的实例。 假设我们指定随机裁剪的输出图像的形状为\ :math:`320\times 480`\ , 下面我们可以查看训练集和测试集所保留的样本个数。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python crop_size = (320, 480) voc_train = VOCSegDataset(True, crop_size, voc_dir) voc_test = VOCSegDataset(False, crop_size, voc_dir) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output read 1114 examples read 1078 examples .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python crop_size = (320, 480) voc_train = VOCSegDataset(True, crop_size, voc_dir) voc_test = VOCSegDataset(False, crop_size, voc_dir) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output read 1114 examples read 1078 examples .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python crop_size = (320, 480) voc_train = VOCSegDataset(True, crop_size, voc_dir) voc_test = VOCSegDataset(False, crop_size, voc_dir) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output read 1114 examples read 1078 examples .. raw:: html
.. raw:: html
设批量大小为64,我们定义训练集的迭代器。 打印第一个小批量的形状会发现:与图像分类或目标检测不同,这里的标签是一个三维数组。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size = 64 train_iter = gluon.data.DataLoader(voc_train, batch_size, shuffle=True, last_batch='discard', num_workers=d2l.get_dataloader_workers()) for X, Y in train_iter: print(X.shape) print(Y.shape) break .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (64, 3, 320, 480) (64, 320, 480) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size = 64 train_iter = torch.utils.data.DataLoader(voc_train, batch_size, shuffle=True, drop_last=True, num_workers=d2l.get_dataloader_workers()) for X, Y in train_iter: print(X.shape) print(Y.shape) break .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output torch.Size([64, 3, 320, 480]) torch.Size([64, 320, 480]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size = 64 train_iter = paddle.io.DataLoader(voc_train, batch_size=batch_size, shuffle=True, drop_last=True, return_list=True, num_workers=d2l.get_dataloader_workers()) for X, Y in train_iter: print(X.shape) print(Y.shape) break .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [64, 3, 320, 480] [64, 320, 480] .. raw:: html
.. raw:: html
整合所有组件 ~~~~~~~~~~~~ 最后,我们定义以下\ ``load_data_voc``\ 函数来下载并读取Pascal VOC2012语义分割数据集。 它返回训练集和测试集的数据迭代器。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def load_data_voc(batch_size, crop_size): """加载VOC语义分割数据集""" voc_dir = d2l.download_extract('voc2012', os.path.join( 'VOCdevkit', 'VOC2012')) num_workers = d2l.get_dataloader_workers() train_iter = gluon.data.DataLoader( VOCSegDataset(True, crop_size, voc_dir), batch_size, shuffle=True, last_batch='discard', num_workers=num_workers) test_iter = gluon.data.DataLoader( VOCSegDataset(False, crop_size, voc_dir), batch_size, last_batch='discard', num_workers=num_workers) return train_iter, test_iter .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def load_data_voc(batch_size, crop_size): """加载VOC语义分割数据集""" voc_dir = d2l.download_extract('voc2012', os.path.join( 'VOCdevkit', 'VOC2012')) num_workers = d2l.get_dataloader_workers() train_iter = torch.utils.data.DataLoader( VOCSegDataset(True, crop_size, voc_dir), batch_size, shuffle=True, drop_last=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader( VOCSegDataset(False, crop_size, voc_dir), batch_size, drop_last=True, num_workers=num_workers) return train_iter, test_iter .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python #@save def load_data_voc(batch_size, crop_size): """加载VOC语义分割数据集""" voc_dir = d2l.download_extract('voc2012', os.path.join( 'VOCdevkit', 'VOC2012')) num_workers = d2l.get_dataloader_workers() train_iter = paddle.io.DataLoader( VOCSegDataset(True, crop_size, voc_dir), batch_size=batch_size, shuffle=True, return_list=True, drop_last=True, num_workers=num_workers) test_iter = paddle.io.DataLoader( VOCSegDataset(False, crop_size, voc_dir), batch_size=batch_size, drop_last=True, return_list=True, num_workers=num_workers) return train_iter, test_iter .. raw:: html
.. raw:: html
小结 ---- - 语义分割通过将图像划分为属于不同语义类别的区域,来识别并理解图像中像素级别的内容。 - 语义分割的一个重要的数据集叫做Pascal VOC2012。 - 由于语义分割的输入图像和标签在像素上一一对应,输入图像会被随机裁剪为固定尺寸而不是缩放。 练习 ---- 1. 如何在自动驾驶和医疗图像诊断中应用语义分割?还能想到其他领域的应用吗? 2. 回想一下 :numref:`sec_image_augmentation`\ 中对数据增强的描述。图像分类中使用的哪种图像增强方法是难以用于语义分割的? .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html