.. _sec_fcn: 全卷积网络 ========== 如 :numref:`sec_semantic_segmentation`\ 中所介绍的那样,语义分割是对图像中的每个像素分类。 *全卷积网络*\ (fully convolutional network,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换 :cite:`Long.Shelhamer.Darrell.2015`\ 。 与我们之前在图像分类或目标检测部分介绍的卷积神经网络不同,全卷积网络将中间层特征图的高和宽变换回输入图像的尺寸:这是通过在 :numref:`sec_transposed_conv`\ 中引入的\ *转置卷积*\ (transposed convolution)实现的。 因此,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。 .. raw:: html
mxnetpytorchpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python %matplotlib inline from mxnet import gluon, image, init, np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python %matplotlib inline import torch import torchvision from torch import nn from torch.nn import functional as F from d2l import torch as d2l .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python %matplotlib inline import warnings from d2l import paddle as d2l warnings.filterwarnings("ignore") import paddle import paddle.vision as paddlevision from paddle import nn from paddle.nn import functional as F .. raw:: html
.. raw:: html
构造模型 -------- 下面我们了解一下全卷积网络模型最基本的设计。 如 :numref:`fig_fcn`\ 所示,全卷积网络先使用卷积神经网络抽取图像特征,然后通过\ :math:`1\times 1`\ 卷积层将通道数变换为类别个数,最后在 :numref:`sec_transposed_conv`\ 中通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。 因此,模型输出与输入图像的高和宽相同,且最终输出通道包含了该空间位置像素的类别预测。 .. _fig_fcn: .. figure:: ../img/fcn.svg 全卷积网络 下面,我们使用在ImageNet数据集上预训练的ResNet-18模型来提取图像特征,并将该网络记为\ ``pretrained_net``\ 。 ResNet-18模型的最后几层包括全局平均汇聚层和全连接层,然而全卷积网络中不需要它们。 .. raw:: html
mxnetpytorchpaddle
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python pretrained_net = gluon.model_zoo.vision.resnet18_v2(pretrained=True) pretrained_net.features[-3:], pretrained_net.output .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [07:25:11] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (HybridSequential( (0): Activation(relu) (1): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW) (2): Flatten ), Dense(512 -> 1000, linear)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python pretrained_net = torchvision.models.resnet18(pretrained=True) list(pretrained_net.children())[-3:] .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /home/ci/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output 0%| | 0.00/44.7M [00:00 .. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python pretrained_net = paddlevision.models.resnet18(pretrained=True) list(pretrained_net.children())[-3:] .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output W0818 09:21:31.243886 91274 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.8, Runtime API Version: 11.8 W0818 09:21:31.275069 91274 gpu_resources.cc:91] device: 0, cuDNN Version: 8.7. 92.3% .. raw:: html
.. raw:: html
接下来,我们创建一个全卷积网络\ ``net``\ 。 它复制了ResNet-18中大部分的预训练层,除了最后的全局平均汇聚层和最接近输出的全连接层。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net = nn.HybridSequential() for layer in pretrained_net.features[:-2]: net.add(layer) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net = nn.Sequential(*list(pretrained_net.children())[:-2]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python net = nn.Sequential(*list(pretrained_net.children())[:-2]) .. raw:: html
.. raw:: html
给定高度为320和宽度为480的输入,\ ``net``\ 的前向传播将输入的高和宽减小至原来的\ :math:`1/32`\ ,即10和15。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python X = np.random.uniform(size=(1, 3, 320, 480)) net(X).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output (1, 512, 10, 15) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python X = torch.rand(size=(1, 3, 320, 480)) net(X).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output torch.Size([1, 512, 10, 15]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python X = paddle.rand(shape=(1, 3, 320, 480)) net(X).shape .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output [1, 512, 10, 15] .. raw:: html
.. raw:: html
接下来使用\ :math:`1\times1`\ 卷积层将输出通道数转换为Pascal VOC2012数据集的类数(21类)。 最后需要将特征图的高度和宽度增加32倍,从而将其变回输入图像的高和宽。 回想一下 :numref:`sec_padding`\ 中卷积层输出形状的计算方法: 由于\ :math:`(320-64+16\times2+32)/32=10`\ 且\ :math:`(480-64+16\times2+32)/32=15`\ ,我们构造一个步幅为\ :math:`32`\ 的转置卷积层,并将卷积核的高和宽设为\ :math:`64`\ ,填充为\ :math:`16`\ 。 我们可以看到如果步幅为\ :math:`s`\ ,填充为\ :math:`s/2`\ (假设\ :math:`s/2`\ 是整数)且卷积核的高和宽为\ :math:`2s`\ ,转置卷积核会将输入的高和宽分别放大\ :math:`s`\ 倍。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python num_classes = 21 net.add(nn.Conv2D(num_classes, kernel_size=1), nn.Conv2DTranspose( num_classes, kernel_size=64, padding=16, strides=32)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python num_classes = 21 net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1)) net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes, kernel_size=64, padding=16, stride=32)) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python num_classes = 21 net.add_sublayer('final_conv', nn.Conv2D(512, num_classes, kernel_size=1)) net.add_sublayer('transpose_conv', nn.Conv2DTranspose(num_classes, num_classes, kernel_size=64, padding=16, stride=32)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Conv2DTranspose(21, 21, kernel_size=[64, 64], stride=[32, 32], padding=16, data_format=NCHW) .. raw:: html
.. raw:: html
初始化转置卷积层 ---------------- 在图像处理中,我们有时需要将图像放大,即\ *上采样*\ (upsampling)。 *双线性插值*\ (bilinear interpolation) 是常用的上采样方法之一,它也经常用于初始化转置卷积层。 为了解释双线性插值,假设给定输入图像,我们想要计算上采样输出图像上的每个像素。 1. 将输出图像的坐标\ :math:`(x,y)`\ 映射到输入图像的坐标\ :math:`(x',y')`\ 上。 例如,根据输入与输出的尺寸之比来映射。 请注意,映射后的\ :math:`x′`\ 和\ :math:`y′`\ 是实数。 2. 在输入图像上找到离坐标\ :math:`(x',y')`\ 最近的4个像素。 3. 输出图像在坐标\ :math:`(x,y)`\ 上的像素依据输入图像上这4个像素及其与\ :math:`(x',y')`\ 的相对距离来计算。 双线性插值的上采样可以通过转置卷积层实现,内核由以下\ ``bilinear_kernel``\ 函数构造。 限于篇幅,我们只给出\ ``bilinear_kernel``\ 函数的实现,不讨论算法的原理。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def bilinear_kernel(in_channels, out_channels, kernel_size): factor = (kernel_size + 1) // 2 if kernel_size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = (np.arange(kernel_size).reshape(-1, 1), np.arange(kernel_size).reshape(1, -1)) filt = (1 - np.abs(og[0] - center) / factor) * \ (1 - np.abs(og[1] - center) / factor) weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size)) weight[range(in_channels), range(out_channels), :, :] = filt return np.array(weight) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def bilinear_kernel(in_channels, out_channels, kernel_size): factor = (kernel_size + 1) // 2 if kernel_size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = (torch.arange(kernel_size).reshape(-1, 1), torch.arange(kernel_size).reshape(1, -1)) filt = (1 - torch.abs(og[0] - center) / factor) * \ (1 - torch.abs(og[1] - center) / factor) weight = torch.zeros((in_channels, out_channels, kernel_size, kernel_size)) weight[range(in_channels), range(out_channels), :, :] = filt return weight .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def bilinear_kernel(in_channels, out_channels, kernel_size): factor = (kernel_size + 1) // 2 if kernel_size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = (paddle.arange(kernel_size).reshape([-1, 1]), paddle.arange(kernel_size).reshape([1, -1])) filt = (1 - paddle.abs(og[0] - center) / factor) * \ (1 - paddle.abs(og[1] - center) / factor) weight = paddle.zeros((in_channels, out_channels, kernel_size, kernel_size)) weight[range(in_channels), range(out_channels), :, :] = filt return weight .. raw:: html
.. raw:: html
让我们用双线性插值的上采样实验它由转置卷积层实现。 我们构造一个将输入的高和宽放大2倍的转置卷积层,并将其卷积核用\ ``bilinear_kernel``\ 函数初始化。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python conv_trans = nn.Conv2DTranspose(3, kernel_size=4, padding=1, strides=2) conv_trans.initialize(init.Constant(bilinear_kernel(3, 3, 4))) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python conv_trans = nn.ConvTranspose2d(3, 3, kernel_size=4, padding=1, stride=2, bias=False) conv_trans.weight.data.copy_(bilinear_kernel(3, 3, 4)); .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python conv_trans = nn.Conv2DTranspose(3, 3, kernel_size=4, padding=1, stride=2, bias_attr=False) conv_trans.weight.set_value(bilinear_kernel(3, 3, 4)); .. raw:: html
.. raw:: html
读取图像\ ``X``\ ,将上采样的结果记作\ ``Y``\ 。为了打印图像,我们需要调整通道维的位置。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python img = image.imread('../img/catdog.jpg') X = np.expand_dims(img.astype('float32').transpose(2, 0, 1), axis=0) / 255 Y = conv_trans(X) out_img = Y[0].transpose(1, 2, 0) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python img = torchvision.transforms.ToTensor()(d2l.Image.open('../img/catdog.jpg')) X = img.unsqueeze(0) Y = conv_trans(X) out_img = Y[0].permute(1, 2, 0).detach() .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python img = paddlevision.transforms.ToTensor()(d2l.Image.open('../img/catdog.jpg')) X = img.unsqueeze(0) Y = conv_trans(X) out_img = Y[0].transpose([1, 2, 0]).detach() .. raw:: html
.. raw:: html
可以看到,转置卷积层将图像的高和宽分别放大了2倍。 除了坐标刻度不同,双线性插值放大的图像和在 :numref:`sec_bbox`\ 中打印出的原图看上去没什么两样。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python d2l.set_figsize() print('input image shape:', img.shape) d2l.plt.imshow(img.asnumpy()); print('output image shape:', out_img.shape) d2l.plt.imshow(out_img.asnumpy()); .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output input image shape: (561, 728, 3) output image shape: (1122, 1456, 3) .. figure:: output_fcn_ce3435_99_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python d2l.set_figsize() print('input image shape:', img.permute(1, 2, 0).shape) d2l.plt.imshow(img.permute(1, 2, 0)); print('output image shape:', out_img.shape) d2l.plt.imshow(out_img); .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output input image shape: torch.Size([561, 728, 3]) output image shape: torch.Size([1122, 1456, 3]) .. figure:: output_fcn_ce3435_102_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python d2l.set_figsize() print('input image shape:', img.transpose([1, 2, 0]).shape) d2l.plt.imshow(img.transpose([1, 2, 0])); print('output image shape:', out_img.shape) d2l.plt.imshow(out_img); .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output input image shape: [561, 728, 3] output image shape: [1122, 1456, 3] .. figure:: output_fcn_ce3435_105_1.svg .. raw:: html
.. raw:: html
全卷积网络用双线性插值的上采样初始化转置卷积层。对于\ :math:`1\times 1`\ 卷积层,我们使用Xavier初始化参数。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python W = bilinear_kernel(num_classes, num_classes, 64) net[-1].initialize(init.Constant(W)) net[-2].initialize(init=init.Xavier()) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python W = bilinear_kernel(num_classes, num_classes, 64) net.transpose_conv.weight.data.copy_(W); .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python W = bilinear_kernel(num_classes, num_classes, 64) net.transpose_conv.weight.set_value(W); .. raw:: html
.. raw:: html
读取数据集 ---------- 我们用 :numref:`sec_semantic_segmentation`\ 中介绍的语义分割读取数据集。 指定随机裁剪的输出图像的形状为\ :math:`320\times 480`\ :高和宽都可以被\ :math:`32`\ 整除。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size, crop_size = 32, (320, 480) train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output read 1114 examples read 1078 examples .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python batch_size, crop_size = 32, (320, 480) train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output read 1114 examples read 1078 examples .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import os def load_data_voc(batch_size, crop_size): """加载VOC语义分割数据集 Defined in :numref:`sec_semantic_segmentation`""" voc_dir = d2l.download_extract('voc2012', os.path.join( 'VOCdevkit', 'VOC2012')) train_iter = paddle.io.DataLoader( d2l.VOCSegDataset(True, crop_size, voc_dir), batch_size=batch_size, shuffle=True, return_list=True, drop_last=True, num_workers=0) test_iter = paddle.io.DataLoader( d2l.VOCSegDataset(False, crop_size, voc_dir), batch_size=batch_size, drop_last=True, return_list=True, num_workers=0) return train_iter, test_iter batch_size, crop_size = 32, (320, 480) train_iter, test_iter = load_data_voc(batch_size, crop_size) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output read 1114 examples read 1078 examples .. raw:: html
.. raw:: html
训练 ---- 现在我们可以训练全卷积网络了。 这里的损失函数和准确率计算与图像分类中的并没有本质上的不同,因为我们使用转置卷积层的通道来预测像素的类别,所以需要在损失计算中指定通道维。 此外,模型基于每个像素的预测类别是否正确来计算准确率。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python num_epochs, lr, wd, devices = 5, 0.1, 1e-3, d2l.try_all_gpus() loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=1) net.collect_params().reset_ctx(devices) trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr, 'wd': wd}) d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.325, train acc 0.892, test acc 0.846 131.8 examples/sec on [gpu(0), gpu(1)] .. figure:: output_fcn_ce3435_135_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def loss(inputs, targets): return F.cross_entropy(inputs, targets, reduction='none').mean(1).mean(1) num_epochs, lr, wd, devices = 5, 0.001, 1e-3, d2l.try_all_gpus() trainer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd) d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.443, train acc 0.863, test acc 0.848 254.0 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)] .. figure:: output_fcn_ce3435_138_1.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def loss(inputs, targets): return F.cross_entropy(inputs.transpose([0, 2, 3, 1]), targets, reduction='none').mean(1).mean(1) num_epochs, lr, wd, devices = 5, 0.001, 1e-3, d2l.try_all_gpus() trainer = paddle.optimizer.SGD(learning_rate=lr, parameters=net.parameters(), weight_decay=wd) d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices[:1]) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output loss 0.370, train acc 0.882, test acc 0.841 210.8 examples/sec on [Place(gpu:0)] .. figure:: output_fcn_ce3435_141_1.svg .. raw:: html
.. raw:: html
预测 ---- 在预测时,我们需要将输入图像在各个通道做标准化,并转成卷积神经网络所需要的四维输入格式。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def predict(img): X = test_iter._dataset.normalize_image(img) X = np.expand_dims(X.transpose(2, 0, 1), axis=0) pred = net(X.as_in_ctx(devices[0])).argmax(axis=1) return pred.reshape(pred.shape[1], pred.shape[2]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def predict(img): X = test_iter.dataset.normalize_image(img).unsqueeze(0) pred = net(X.to(devices[0])).argmax(dim=1) return pred.reshape(pred.shape[1], pred.shape[2]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def predict(img): X = paddle.to_tensor(test_iter.dataset.normalize_image(img),dtype='float32').unsqueeze(0) pred = net(X).argmax(axis=1) return pred.reshape([pred.shape[1], pred.shape[2]]) .. raw:: html
.. raw:: html
为了可视化预测的类别给每个像素,我们将预测类别映射回它们在数据集中的标注颜色。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def label2image(pred): colormap = np.array(d2l.VOC_COLORMAP, ctx=devices[0], dtype='uint8') X = pred.astype('int32') return colormap[X, :] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def label2image(pred): colormap = torch.tensor(d2l.VOC_COLORMAP, device=devices[0]) X = pred.long() return colormap[X, :] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python def label2image(pred): colormap = paddle.to_tensor(d2l.VOC_COLORMAP) X = pred.astype(paddle.int32) return colormap[X] .. raw:: html
.. raw:: html
测试数据集中的图像大小和形状各异。 由于模型使用了步幅为32的转置卷积层,因此当输入图像的高或宽无法被32整除时,转置卷积层输出的高或宽会与输入图像的尺寸有偏差。 为了解决这个问题,我们可以在图像中截取多块高和宽为32的整数倍的矩形区域,并分别对这些区域中的像素做前向传播。 请注意,这些区域的并集需要完整覆盖输入图像。 当一个像素被多个区域所覆盖时,它在不同区域前向传播中转置卷积层输出的平均值可以作为\ ``softmax``\ 运算的输入,从而预测类别。 为简单起见,我们只读取几张较大的测试图像,并从图像的左上角开始截取形状为\ :math:`320\times480`\ 的区域用于预测。 对于这些测试图像,我们逐一打印它们截取的区域,再打印预测结果,最后打印标注的类别。 .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') test_images, test_labels = d2l.read_voc_images(voc_dir, False) n, imgs = 4, [] for i in range(n): crop_rect = (0, 0, 480, 320) X = image.fixed_crop(test_images[i], *crop_rect) pred = label2image(predict(X)) imgs += [X, pred, image.fixed_crop(test_labels[i], *crop_rect)] d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2); .. figure:: output_fcn_ce3435_171_0.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') test_images, test_labels = d2l.read_voc_images(voc_dir, False) n, imgs = 4, [] for i in range(n): crop_rect = (0, 0, 320, 480) X = torchvision.transforms.functional.crop(test_images[i], *crop_rect) pred = label2image(predict(X)) imgs += [X.permute(1,2,0), pred.cpu(), torchvision.transforms.functional.crop( test_labels[i], *crop_rect).permute(1,2,0)] d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2); .. figure:: output_fcn_ce3435_174_0.svg .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012') test_images, test_labels = d2l.read_voc_images(voc_dir, False) n, imgs = 4, [] for i in range(n): crop_rect = (0, 0, 320, 480) X = paddlevision.transforms.crop(test_images[i], *crop_rect) pred = label2image(predict(X)) imgs += [X.transpose([1,2,0]).astype('uint8'), pred, paddlevision.transforms.crop( test_labels[i], *crop_rect).transpose([1, 2, 0]).astype("uint8")] d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2); .. figure:: output_fcn_ce3435_177_0.svg .. raw:: html
.. raw:: html
小结 ---- - 全卷积网络先使用卷积神经网络抽取图像特征,然后通过\ :math:`1\times 1`\ 卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。 - 在全卷积网络中,我们可以将转置卷积层初始化为双线性插值的上采样。 练习 ---- 1. 如果将转置卷积层改用Xavier随机初始化,结果有什么变化? 2. 调节超参数,能进一步提升模型的精度吗? 3. 预测测试图像中所有像素的类别。 4. 最初的全卷积网络的论文中 :cite:`Long.Shelhamer.Darrell.2015`\ 还使用了某些卷积神经网络中间层的输出。试着实现这个想法。 .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html
`Discussions `__ .. raw:: html
.. raw:: html